A mill is a grinder used to grind and blend solid or hard materials into smaller pieces by means of shear, impact and compression methods. Grinding mill machine is an essential part of many industrial processes, there are mainly five types of mills to cover more than 90% materials size-reduction applications.
Do you the difference between the ball mill, rod mills, SAG mill, tube mill, pebble mill?
In the previous article, I made a comparison of ball mill and rod mill. Today, we will learn about the difference between SAG mill vs ball mill.
SAG Mill
AG/SAG is short for autogenous mill and semi-autogenous mill, it combines with two functions of crushing and grinding, uses the ground material itself as the grinding media, through the mutual impact and grinding action to gradually reduce the material size.
SAG mill is usually used to grind large pieces into small pieces, especially for the pre-processing of grinding circuits, thus also known as primary stage grinding machine. Based on the high throughput and coarse grind, AG mills produce coarse grinds often classify mill discharge with screens and trommel.
SAG mills grinding media includes some large and hard rocks, filled rate of 9% – 20%. SAG mill grind ores through impact, attrition, abrasion forces. In practice, for a given ore and equal processing conditions, the AG milling has a finer grind than SAG mills.
How does a sag mill work?
The working principle of the self-grinding machine is basically the same as the ball mill, the biggest difference is that the sag grinding machine uses the crushed material inside the cylinder as the grinding medium, the material constantly impacts and grinding to gradually pulverize. Sometimes, in order to improve the processing capacity of the mill, a small amount of steel balls be added appropriately, usually occupying 2-3% of the volume of the mill (that is semi-autogenous grinding).
Advantages
–High capacity
–Ability to grind multiple types of ore in various circuit configurations, reduces the complexity of maintenance and coordination.
–Compared with the traditional tumbling mill, the autogenous mill reduces the consumption of lining plates and grinding media, thus have a lower operation cost.
–The self-grinding machine can grind the material to 0.074mm in one time, and its content accounts for 20% ~ 50% of the total amount of the product. Grinding ratio can reach 4000 ~ 5000, more than ten times higher than ball, rod mill.
Application
Autogenous mills are common in the primary processing unit for the major large grinding circuits in the mining field, separates out some precious metals, like gold, silver.
Ball Mill
Ball mills are fine grinders, have horizontal ball mill and vertical ball mill, their cylinders are partially filled with steel balls, manganese balls, or ceramic balls. The material is ground to the required fineness by rotating the cylinder causing friction and impact. The internal machinery of the ball mill grinds the material into powder and continues to rotate if extremely high precision and precision is required.
Application
The ball mill can be applied in the cement production plants, mineral processing plants and where the fine grinding of raw material is required. From the volume, the ball mill divide into industrial ball mill and laboratory use the small ball mill, sample grinding test. In addition, these mills also play an important role in cold welding, alloy production, and thermal power plant power production.
SAG mill vs Ball mill
Crushing ratio
The biggest characteristic of the sag mill is that the crushing ratio is large. The particle size of the materials to be ground is 300 ~ 400mm, sometimes even larger, and the minimum particle size of the materials to be discharged can reach 0.1 mm. The calculation shows that the crushing ratio can reach 3000 ~ 4000, while the ball mill’s crushing ratio is smaller. The feed size is usually between 20-30mm and the product size is 0-3mm.
Feed
Both the autogenous grinding mill and the ball mill feed parts are welded with groove and embedded inner wear-resistant lining plate. As the sag mill does not contain grinding medium, the abrasion and impact on the equipment are relatively small.
The feed of the ball mill contains grinding balls. In order to effectively reduce the direct impact of materials on the ball mill feed bushing and improve the service life of the ball mill feed bushing, the feeding point of the groove in the feeding part of the ball mill must be as close to the side of the mill barrel as possible. And because the ball mill feed grain size is larger, ball mill feeding groove must have a larger slope and height, so that feed smooth.
Bearing
Since the power of the autogenous tumbling mill is relatively small, it is appropriate to choose dynamic and static pressure bearing. The ball bearing liner is made of lead-based bearing alloy, and the back of the bearing is formed with a waist drum to form a contact centering structure, with the advantages of flexible movement.
The bearing housing is lubricated by high pressure during start-up and stop-up, and the oil film is formed by static pressure. The journal is lifted up to prevent dry friction on the sliding surface, and the starting energy moment is reduced. The bearing lining is provided with a snake-shaped cooling water pipe, which can supply cooling water when necessary to reduce the temperature of the bearing bush. The cooling water pipe is made of red copper which has certain corrosion resistance.
Ball mill power is relatively large, the appropriate choice of hydrostatic sliding bearing. The main bearing bush is lined with babbitt alloy bush, each bush has two high-pressure oil chambers, high-pressure oil has been supplied to the oil chamber before and during the operation of the mill, the high-pressure oil enters the oil chamber through the shunting motor, and the static pressure oil film is compensated automatically to ensure the same oil film thickness To provide a continuous static pressure oil film for mill operation, to ensure that the journal and the bearing Bush are completely out of contact, thus greatly reducing the mill start-up load, and can reduce the impact on the mill transmission part, but also can avoid the abrasion of the bearing Bush, the service life of the bearing Bush is prolonged. The pressure indication of the high pressure oil circuit can be used to reflect the load of the mill indirectly. When the mill stops running, the high pressure oil will float the Journal, and the Journal will stop gradually in the bush, so that the Bush will not be abraded.
Each main bearing is equipped with two temperature probe, dynamic monitoring of the bearing Bush temperature, when the temperature is greater than the specified temperature value, it can automatically alarm and stop grinding. In order to compensate for the change of the mill length due to temperature, there is a gap between the hollow journal at the feeding end and the bearing Bush width, which allows the journal to move axially on the bearing Bush. The two ends of the main bearing are sealed in an annular way and filled with grease through the lubricating oil pipe to prevent the leakage of the lubricating oil and the entry of dust.
Gyration
The end cover of the autogenous mill is made of steel plate and welded into one body; the structure is simple, but the rigidity and strength are low; the liner of the autogenous mill is made of high manganese steel.
The end cover and the hollow shaft can be made into an integral or split type according to the actual situation of the project. No matter the integral or split type structure, the end cover and the hollow shaft are all made of Casting After rough machining, the key parts are detected by ultrasonic, and after finishing, the surface is detected by magnetic particle. The surface of the hollow shaft journal is Polished after machining. The end cover and the cylinder body are all connected by high-strength bolts. Strict process measures to control the machining accuracy of the joint surface stop, to ensure reliable connection and the concentricity of the two end journal after final assembly. According to the actual situation of the project, the cylinder can be made as a whole or divided, with a flanged connection and stop positioning. All welds are penetration welds, and all welds are inspected by ultrasonic nondestructive testing After welding, the whole Shell is returned to the furnace for tempering stress relief treatment, and after heat treatment, the shell surface is shot-peened. The lining plate of the ball mill is usually made of alloy material.
Transmission
The transmission part comprises a gear and a gear, a gear housing, a gear housing and an accessory thereof. The big gear of the transmission part of the self-grinding machine fits on the hollow shaft of the discharge material, which is smaller in size, but the seal of the gear cover is not good, and the ore slurry easily enters the hollow shaft of the discharge material, causing the hollow shaft to wear.
The big gear of the ball mill fits on the mill shell, the size is bigger, the big gear is divided into half structure, the radial and axial run-out of the big gear are controlled within the national standard, the aging treatment is up to the standard, and the stress and deformation after processing are prevented. The big gear seal adopts the radial seal and the reinforced big gear shield. It is welded and manufactured in the workshop. The geometric size is controlled, the deformation is prevented and the sealing effect is ensured. The small gear transmission device adopts the cast iron base, the bearing base and the bearing cap are processed at the same time to reduce the vibration in operation. Large and small gear lubrication: The use of spray lubrication device timing quantitative forced spray lubrication, automatic control, no manual operation. The gear cover is welded by profile steel and high-quality steel plate. In order to enhance the stiffness of the gear cover, the finite element analysis is carried out, and the supporting structure is added in the weak part according to the analysis results.
Discharge
The self-mill adopts the self-return device to realize the discharge of the mill. The self-returning device is located in the revolving part of the mill, and the material forms a self-circulation in the revolving part of the mill through the self-returning device, discharging the qualified material from the mill, leading the unqualified material back into the revolving part to participate in the grinding operation.
The ball mill adopts a discharge screen similar to the ball mill, and the function of blocking the internal medium of the overflow ball mill is accomplished inside the rotary part of the ball mill. The discharge screen is only responsible for forcing out a small amount of the medium that overflows into the discharge screen through the internal welding reverse spiral, to achieve forced discharge mill.
Slow transmission
The slow drive consists of a brake motor, a coupling, a planetary reducer and a claw-type clutch. The device is connected to a pinion shaft and is used for mill maintenance and replacement of liners. In addition, after the mill is shut down for a long time, the slow-speed transmission device before starting the main motor can eliminate the eccentric load of the steel ball, loosen the consolidation of the steel ball and materials, ensure safe start, avoid overloading of the air clutch, and play a protective role. The slow-speed transmission device can realize the point-to-point reverse in the electronic control design. When connecting the main motor drive, the claw-type Clutch automatically disengages, the maintenance personnel should pay attention to the safety.
The slow drive device of the ball mill is provided with a rack and pinion structure, and the operating handle is moved to the side away from the cylinder body The utility model not only reduces the labor intensity but also ensures the safety of the operators.